PROMOTING SCIENCE AND TECHNOLOGY BETWEEN INDIA AND THE U.S.

Dino Di Carlo

dicarlopic.jpg

Research Area

Biomedical Engineering

Institution

University of California, Los Angeles

We are exploiting unique physics, microenvironment control, and the potential for automation associated with miniaturized systems for applications in basic biology, medical diagnostics, and cellular engineering. Current research is focused on:

(i) Quantitative cell biology and mechanics of cancer metastasis. Microfluidic methods to control the surface chemistry, mechanical, and soluble environment are well suited to address questions associated with cell migration and movement. We are particularly interested in the process of cancer metastasis and intravasation.

(ii) Nonlinear microfluidics. Nonlinear fluid dynamic effects are usually not considered in microfluidic systems but may provide simple methods to manipulate and sort rare populations of cells at high-throughputs. We are studying the physical basis of inertial migration of particles and engineering novel portable and robust diagnostic and analysis systems using this phenomenon for applications in the developed and developing world.

(iii) Microfluidic directed cellular evolution. Microfluidic technologies may offer advantages in creating new useful selection criteria for cellular evolution. Besides gaining an understanding of dominant molecular pathways in controlling these behaviors, the resultant evolved cell populations and genetic modifications may be useful for therapeutic applications.

Sign Up to Receive Our Newsletter