Medicine, Pharmaceutical Sciences, Systems and Synthetic Biology
New York University
The Iyengar laboratory is interested in understanding how signals are routed and processed through cellular signaling networks including mechanisms of information sorting and integration.
We are interested in understanding dynamics of network topology. For this we focus on identifying regulatory motifs such as feedback and feedforward loops and determining their information processing capability. We have constructed and analyzed dynamic maps of these motifs to understand how cellular signaling networks engage the various cellular machinery to produce physiological responses to extra-cellular signals. To study complex cell signaling networks we utilize a combination of experimental and theoretical approaches. Multidimensional experimental approaches currently being used in the laboratory include reverse-phase phosphoproteomic arrays, transcription factor arrays, ChIP-Seq and mRNA profiling by sequencing. These experimental approaches are being integrated with theoretical analysis using both graph theory approaches and differential equation based modeling to understand network regulation of cell proliferation and activity induced synaptic plasticity.