Chemical Engineering, Energy, Materials Science, Nanotechnology Research, Polymers & Nanotechnology
University of Texas at Austin
“Research Interests: Advanced Materials, Polymers & Nanotechnology, Energy and Modeling & Simulation.”
The chemical engineering science of materials is entering a new era of so-called “designer materials,” wherein, based upon the properties required for a particular application, a material is designed by exploiting the self-assembly of appropriately-chosen molecular constituents. Materials so fabricated (also sometimes referred to as advanced materials), are presently proposed for numerous applications, ranging from photonic and quantum devices to biomedical and tissue engineering applications. My research focus is to develop a theoretical and computationally-based program aimed at elucidating the fundamental mechanisms underlying the design of novel, self-assembled advanced materials. The goal is to complement the research of experimentalists (synthetic chemists, chemical engineers, and material scientists) by providing simple but quantitative guidelines to rationally design and synthesize these materials. Towards this broad objective, our group’s research focuses on the development and use of a wide variety of tools spanning both equilibrium and nonequilibrium statistical mechanics, conventional fluid mechanics, molecular rheology and computational tools to complex fluids and biological systems.